Author: esteban

  • Guía práctica para los gatos domésticos: cuidados, comportamiento y bienestar

    Si estás pensando en compartir tu vida con los gatos domesticos, has llegado al lugar adecuado. En pocas palabras: los gatos domésticos pueden ser compañeros tranquilos, limpios y afectuosos, siempre que entendamos sus necesidades. A continuación, encontrarás consejos claros sobre cuidado, comportamiento felino y bienestar integral para que tu mascota felina prospere en casa.

    Beneficios de convivir con los gatos domésticos

    Vivir con gatos de interior reduce el estrés y aporta compañía silenciosa. Su naturaleza independiente permite adaptarse a pisos pequeños sin renunciar al vínculo humano-animal.

    Además, estos felinos domésticos ayudan a estructurar rutinas saludables: juego, horarios de comida y momentos de calma. Por otro lado, su mantenimiento resulta predecible si planificas el entorno y la prevención veterinaria.

    Cuidados básicos de los gatos domésticos: alimentación y salud

    Alimentación equilibrada y agua fresca

    Una dieta de calidad, específica para la etapa de vida, es clave para el bienestar del gato. Alternar pienso completo con comida húmeda ayuda a la hidratación y favorece la salud urinaria.

    Además, ofrece raciones medidas para evitar el sobrepeso, un problema común en gatos caseros. Una fuente de agua en circulación estimula el consumo y mantiene a tu mascota bebiendo con frecuencia.

    Si necesitas variar, haz transiciones graduales para no alterar el sistema digestivo. Consulta etiquetas: proteínas de origen animal como primer ingrediente y niveles adecuados de taurina y ácidos grasos.

    Prevención veterinaria y protocolos de salud

    La prevención es tu mejor aliada: calendario de vacunación, desparasitación interna y externa, y revisión anual. Incluso en gatos de interior, los parásitos pueden entrar en casa mediante ropa o calzado.

    Asimismo, la esterilización reduce marcaje, peleas y riesgo de enfermedades reproductivas. Observa señales de alerta como cambios de apetito, apatía, vocalizaciones inusuales o visitas frecuentes al arenero.

    Comportamiento felino y enriquecimiento ambiental en casa

    Para entender su conducta, recuerda que un gato es un cazador crepuscular. Por ello, planifica sesiones de juego estructurado con cañas, pelotas y juguetes interactivos que imiten la caza.

    Además, ofrece enriquecimiento ambiental: estantes elevados, escondites, torres para gatos y rotación de juguetes. De este modo, previenes el aburrimiento, reduciendo estrés y conductas indeseadas.

    Juego y comunicación efectiva

    Cierra cada sesión con una pequeña ración de comida para completar el patrón caza-comida-descanso. Así promueves un sueño reparador y disminuyes despertares nocturnos.

    Por otro lado, refuerza con premios conductas deseadas y evita castigos. El uso de feromonas sintéticas puede facilitar la adaptación a cambios en el hogar.

    Higiene del arenero y rascado: claves prácticas

    El arenero debe ubicarse en un sitio tranquilo y de fácil acceso, lejos del comedero. Mantén una capa de arena aglomerante y retira desechos a diario para minimizar olores.

    Si conviven varios gatos, ofrece al menos un arenero por gato más uno extra. Además, prueba con areneros abiertos y cubiertos para identificar la preferencia de tu felino doméstico.

    Rascadores y mantenimiento de uñas

    El rascado es una necesidad natural, no una travesura. Coloca rascadores de sisal verticales y horizontales cerca de zonas de descanso y tránsito.

    Para fomentar su uso, esparce hierba gatera o utiliza premios justo después de rascar. En cambio, evita regañar; redirige la conducta y protege muebles con fundas temporales.

    Adopción responsable y esterilización de gatos domésticos

    Antes de adoptar, evalúa tiempo, presupuesto y espacio. Los refugios ofrecen gatos sociables, adultos y cachorros, con historial sanitario y asesoramiento.

    La esterilización temprana favorece la convivencia y previene camadas no deseadas. Además, disminuye escapadas, marcaje con orina y reduce la probabilidad de ciertos tumores.

    Seguridad en el hogar y convivencia armoniosa

    Haz tu casa cat-friendly: asegura ventanas con mallas, guarda productos tóxicos y elige plantas seguras para gatos. Un ambiente predecible, con rutinas y zonas de refugio, reduce el estrés.

    Al final del día, los gatos domésticos prosperan cuando atendemos sus necesidades físicas y emocionales. Empieza hoy con pequeños cambios: mejora su dieta, renueva los rascadores y programa esa revisión veterinaria que marcará la diferencia.

  • Explorando las Últimas Noticias en España: Un Vistazo Detallado

    En el vertiginoso mundo actual, mantenerse informado sobre las últimas noticias en España es fundamental para comprender los eventos que moldean el país. En este artículo, exploraremos algunos de los desarrollos más significativos, ofreciendo una perspectiva clara y oportuna.

    El Impacto de la Política Española en 2023

    La política sigue siendo una de las principales fuerzas que impulsan las noticias en España. Los recientes comicios han reflejado un cambio notable en las tendencias políticas del país. Con partidos emergentes ganando terreno, el espectro político se encuentra en una transición única. Esta dinámica tiene un impacto directo en la implementación de nuevas políticas y en la dirección que España tomará en los próximos años.

    Crisis y Recuperación Económica

    La economía es otro tema candente en las noticias actuales de España. Después de enfrentar desafíos significativos debido a la pandemia, muchas industrias están en proceso de recuperación. La implementación de medidas económicas estratégicas y los incentivos del gobierno buscan respaldar el crecimiento sostenido. Estos esfuerzos son de vital importancia para revitalizar la confianza del consumidor y fomentar la estabilidad financiera.

    Innovaciones en Tecnología y Su Influencia

    La tecnología está revolucionando diversos sectores en España, convirtiéndose en un tema central en las noticias. Desde el auge de las startups tecnológicas hasta la adopción masiva de soluciones digitales en empresas tradicionales, el país está viendo una transformación digital notable. Esto no solo está modernizando la infraestructura, sino que también está creando nuevas oportunidades laborales.

    El Avance de las Energías Renovables

    Otro aspecto que está capturando la atención es el crecimiento de las energías renovables. España se ha comprometido a alcanzar ambiciosos objetivos de sostenibilidad ambiental. El incremento en el uso de la energía eólica y solar está disminuyendo la huella de carbono del país, alineándose con las metas europeas de reducción de emisiones.

    Cultura y Sociedad: Evoluciones Recientes

    La cultura sigue siendo un reflejo vibrante de la sociedad española. Desde festivales culturales renovados hasta exposiciones artísticas innovadoras, el panorama cultural está en constante evolución. Este renacimiento cultural no solo está enriqueciendo la vida de los ciudadanos, sino que también está atrayendo a turistas de todo el mundo.

    Deportes y Eventos Importantes

    En el ámbito deportivo, España continúa siendo una potencia global. Con eventos que capturan la atención internacional y deportes que impulsan el orgullo nacional, las noticias deportivas son un componente esencial del día a día. Este interés no solo fortalece el tejido social, sino que también promueve la unidad y la pasión entre los aficionados.

    España está en una encrucijada de transformación y progreso. Al observar las noticias con un ojo crítico, es posible mantenernos informados y preparados para los futuros cambios. Esto no solo nos permite interpretar mejor el entorno actual, sino que también nos capacita para tomar decisiones más informadas en nuestros propios contextos.

  • Últimas Noticias Sobre Vince Zampella: Realidad y Rumores

    Vince Zampella es una figura central en la industria de los videojuegos, conocido por su papel en la creación de franquicias icónicas. A pesar de los recientes rumores sobre su muerte, es esencial centrarse en hechos reales y entender su impacto en el sector.

    Rumores sobre la Muerte de Vince Zampella

    En los últimos meses, las redes sociales se han inundado de especulaciones sobre la muerte de Vince Zampella. Muchos se preguntan sovbre vince zampella y el origen de estos rumores. Es crucial distinguir entre lo que es una noticia confirmada y lo que es mera especulación.

    ¿Qué Impulsa Estos Rumores?

    La falta de información clara llevó a la proliferación de rumores, alimentados por publicaciones no oficiales. Además, la ausencia de un comunicado oficial fomentó la incertidumbre entre los aficionados y los medios especializados.

    Impacto de Vince Zampella en la Industria

    Independientemente de los rumores, la contribución de Zampella es indiscutible. Como líder de Respawn Entertainment, ha dejado una huella imborrable en franquicias como Call of Duty y Titanfall. Estos logros han incrementado su reputación en el mundo del desarrollo de videojuegos.

    Influencias y Colaboraciones

    Trabajando junto a talentosos diseñadores y desarrolladores, Zampella ha sido pionero en experiencias de juego innovadoras. Colaborar con otros gigantes de la industria ha permitido que sus proyectos alcancen nuevas alturas.

    La Realidad Tras el Mito

    A medida que se desenredan los rumores sobre su muerte, es importante enfocarse en su legado continuo. Zampella no solo es un creador de juegos, sino también una inspiración para futuros desarrolladores que buscan dejar su marca en el mundo.

    El Futuro de Respawn Entertainment

    Bajo el liderazgo de Zampella, Respawn Entertainment sigue innovando y creando contenido que desafía las expectativas del mercado. La ética de trabajo y la visión de Zampella aseguran que la empresa permanezca a la vanguardia tecnológica.

    Para los seguidores de Vince Zampella, estos rumores han sido un recordatorio de su importancia en el sector. En lugar de centrarnos en noticias no confirmadas, es más valioso reconocer y celebrar sus contribuciones pasadas, presentes y futuras, reforzando así una cultura de aprecio y apoyo dentro de la comunidad de videojuegos.

  • Actualización sobre el Juicio de la DANA en España: Qué Debes Saber

    El juicio de la DANA en España ha capturado gran atención mediática en los últimos meses. Con el proceso judicial en pleno desarrollo, las noticias sobre el juicio de la DANA no dejan de aparecer, despertando interés tanto de medios nacionales como internacionales. En este contexto lleno de novedades, es crucial estar actualizado sobre los avances y detalles más relevantes.

    Impacto de la DANA y las Consecuencias Legales

    La gota fría, conocida formalmente como Depresión Aislada en Niveles Altos (DANA), ha provocado estragos en diversas regiones de España. Las fuertes lluvias han causado inundaciones, afectando a miles de familias y propiedades. Este fenómeno meteorológico ha llevado a la apertura de procesos judiciales para responsabilizar a quienes pudieron haber evitado ciertos daños.

    Investigaciones en Curso

    Conforme avanza el juicio, se revelan detalles sobre las investigaciones que exploran las fallas en infraestructuras y previsión de riesgos. Los abogados involucrados han presentado evidencias que apuntan a la falta de mantenimiento de sistemas de alcantarillado, poniendo sobre la mesa preguntas sobre negligencias municipales. Los ciudadanos exigen respuestas claras y justas.

    Perspectivas Expertas y Opiniones Públicas

    Mientras los expertos analizan las causas, el público expresa sus inquietudes sobre la gestión del desastre. Entre los argumentos, se destaca la necesidad de políticas más robustas y la implementación de tecnologías para prever y mitigar futuros eventos. Las discusiones giran en torno a cómo deben asignarse responsabilidades y el papel del gobierno en la protección ciudadana.

    Sistemas de Alerta y Soluciones Propuestas

    A medida que se desarrolla el caso, se proponen nuevas soluciones para mejorar los sistemas de alerta temprana. Los gobiernos locales consideran diversas estrategias tecnológicas para asegurar que las comunidades estén mejor equipadas ante posibles desastres naturales. Esta planificación no solo busca evitar daños materiales, sino proteger vidas humanas.

    El Futuro de la Gestión de Desastres en España

    En paralelo al avance del juicio, las autoridades trabajan en la actualización de los protocolos de emergencia. Las lecciones aprendidas impulsan reformas que pretenden fortalecer la infraestructura y la respuesta inmediata ante crisis climáticas. Este enfoque proactivo resulta crucial en un mundo cada vez más afectado por eventos extremos.

    Con todas estas acciones, España avanza hacia una mayor resiliencia climática. Los ciudadanos, más informados y preparados, esperan que las decisiones tomadas hoy aseguren un futuro más seguro y sostenible. Este proceso judicial no solo busca justicia, sino marcar un precedente que influya positivamente en la gestión de desastres a nivel nacional.

  • Últimas Noticias del Juicio de la DANA: Giros Inesperados en la Investigación Judicial

    El juicio de la DANA continúa generando titulares controversiales en España mientras la investigación avanza con decisiones judicales que moldean el curso del procedimiento. Las últimas noticias del juicio de la DANA revelan un panorama complejo, con la magistrada Nuria Ruiz Tobarra tomando determinaciones que afectan significativamente a las partes involucradas en esta catástrofe que dejó 230 víctimas mortales. Este artículo profundiza en los desarrollos más recientes y su impacto en la búsqueda de responsabilidades.

    Rechazo de Nuevas Citaciones: Protección de las Víctimas

    La jueza al frente de la investigación judicial sobre la gestión de la Dana en Catarroja, Valencia, ha determinado que no existe necesidad de citar nuevamente a los familiares directos de la menor fallecida ni al portavoz de Esquerra Republicana de Catalunya en el Congreso, Gabriel Rufián, para tomar declaración en el marco de la causa. Esta decisión representa un punto de inflexión en el procedimiento judicial.

    Los hechos centrales se han acreditado sobradamente y no hay nuevos elementos que requieran ser incorporados a la instrucción. Los padres de la menor de 11 años, de origen chino, ya participaron en actuaciones judicales previas y no resulta necesario, ni conveniente legal ni emocionalmente, someterlos a nuevas comparecencias. La jueza prioriza el bienestar emocional de los familiares sobre procedimientos adicionales.

    La jueza enfatizó: “No hace falta apelar al Estatuto de la Víctima para saber que es absolutamente perjudicial volver a relatar en sede judicial y de manera injustificada lo sucedido”. Esta postura judicial refleja una consideración humanitaria en medio de procesos legales complejos.

    Polémicas sobre Peticiones de Citación en el Juicio de la DANA

    Las acusaciones inicialmente solicitaron la comparecencia de Gabriel Rufián para que aclarara detalles sobre un fragmento de cuerda que exhibió en una comisión de investigación parlamentaria. Durante la sesión, Rufián le entregó a Pradas un fragmento de la cuerda a la que, según explicó, estuvo agarrada el día de la dana una niña china, que finalmente falleció.

    Sin embargo, la instructora desestimó estas peticiones. La jueza también descartó la posibilidad de una exposición razonada respecto a Gabriel Rufián, explicando que tal medida solo procede cuando existen indicios de delito en la conducta de un aforado, circunstancia que no se da en este caso porque ni la acusación ha identificado posible ilícito penal, ni se establece cuál sería la conexión de Rufián con los hechos objeto de investigación.

    Investigación sobre Medidas de Emergencia en la Gestión de la DANA

    Los desarrollos más recientes muestran que la investigación se enfoca ahora en cuestiones procedimentales cruciales. La jueza de Catarroja (Valencia) que instruye la causa por la gestión de la dana pide a la Abogacía de la Generalitat que informe de si el 29 de octubre de 2024 altos cargos del gobierno autonómico se interesaron por “alguna valoración jurídica, intervención o dictamen en relación con las medidas a adoptar” ante la emergencia.

    Esta línea investigativa busca determinar si existieron deficiencias en la coordinación institucional. La instructora requiere al mismo organismo para que informe si la Abogacía de la Generalitat fue emplazada el 29-O por el entonces secretario autonómico de Presidencia de la Generalitat, Cayetano García, para que emitiera “alguna valoración jurídica, intervención o dictamen en relación con las medidas a adoptar relativas a los episodios de la dana de ese mismo día”.

    Testimonios Clave en el Procedimiento Judicial

    Las ultimas noticias del juicio de la DANA incluyen declaraciones relevantes que cuestiona la versión oficial de eventos. El testimonio de Jorge Suárez ante los juzgados de Catarroja aclaró que las primeras noticias sobre víctimas mortales provocadas por la dana del 29 de octubre de 2029 le llegaron de parte de José Miguel Basset, exjefe del Consorcio Provincial de Bomberos de Valencia, y no a través de la titular entonces de Justicia e Interior, Salomé Pradas. El subdirector general de Emergencias compareció para concluir su declaración en la causa judicial que analiza la gestión de la riada, cuya magnitud provocó 230 fallecimientos.

    Las declaraciones revelan problemas en los canales de comunicación durante la crisis. El subdirector agregó que en todo momento la interlocución incluía a Pradas, aunque resaltó que, a su juicio, no era necesario contar con consenso unánime para actuar, ya que el Cecopi se orienta a labores de coordinación y asesoramiento, pero no sustituye la dirección de los planes de emergencia.

    Complicaciones Procedimentales en la Instrucción

    La investigación enfrenta obstáculos procedimentales significativos que podrían afectar el desarrollo del proceso. La instrucción del caso de la dana afronta uno de sus momentos más delicados tras la readmisión, por orden de la Audiencia Provincial de Valencia, de Yolanda Garrido como acusación particular. Su abogada ha presentado un escrito ante el juzgado instructor en el que solicita la nulidad de todas las actuaciones practicadas desde el pasado 4 de septiembre hasta el 10 de diciembre, un periodo en el que su clienta ha estado fuera del procedimiento por decisión de la juez.

    El conflicto procesal llega en un momento en el que la causa de la dana se encuentra en plena fase de consolidación probatoria, con un volumen considerable de diligencias practicadas y numerosas partes personadas. La decisión que adopte el juzgado en los próximos días será determinante para el rumbo del procedimiento.

    Rol de Autoridades Hidroeléctricas y Meteorológicas

    La investigación también examina las acciones de organismos como la Confederación Hidrográfica del Júcar. Suárez relató ante la judicatura que Miguel Polo, presidente de la Confederación Hidrográfica del Júcar (CHJ), señaló que el escenario previsto era de coronación, no de ruptura de la presa, descartando con ello una emergencia inminente.

    Los últimas noticias del juicio de la DANA muestran que tanto acusaciones como defensas continúan presentando argumentos sobre la responsabilidad de distintas instituciones en la gestión de la emergencia. El procedimiento aún se encuentra en fase de investigación, con múltiples direcciones de análisis abiertas que examinarán cada aspecto de cómo se desarrollaron los eventos del 29 de octubre de 2024. La justicia española se encuentra en el proceso de determinar responsabilidades en esta tragedia que marcó profundamente a la comunidad valenciana, mientras mantiene un equilibrio entre el derecho de las víctimas a la verdad y su necesaria protección psicológica y emocional durante un proceso que puede extenderse durante meses.

  • Galaxias: Descubre los Secretos del Universo y sus Estructuras Cósmicas

    ¿Alguna vez te has preguntado qué son las galaxias y cuál es nuestro lugar en el cosmos? Las galaxias son acumulaciones de gas, polvo y miles de millones de estrellas y sus sistemas solares, agrupadas gracias a la gravedad. Estas estructuras titánicas representan algunos de los objetos más fascinantes del universo observable, y entenderlas nos ayuda a comprender mejor nuestra propia existencia. En este artículo, exploraremos todo sobre las galaxias, sus tipos, características y el papel fundamental que juegan en la configuración del cosmos.

    ¿Qué son las galaxias exactamente?

    Una galaxia es una enorme colección de gas, polvo y miles de millones de estrellas, todas unidas por la gravedad. Cada galaxia contiene estructuras complejas que incluyen no solo estrellas y planetas, sino también materia interestelar y materia oscura. Una galaxia es una gigantesca estructura cósmica que, no sólo alberga miles de millones de estrellas, sino también planetas, gas, polvo y una gran cantidad de materia oscura.

    La escala de las galaxias es prácticamente incomprensible para la mente humana. La Vía Láctea tiene un diámetro de aproximadamente 100.000 años luz y contiene entre 200.000 millones y 400.000 millones de estrellas. Sin embargo, nuestra galaxia es solo una entre muchos miles de millones en el universo observable.

    Tipos de galaxias: Una clasificación fascinante

    Las galaxias no son todas iguales. Presentan una diversidad extraordinaria de formas y tamaños que los astrónomos han clasificado en diferentes categorías. Conocer los tipos de galaxias nos permite comprender mejor la estructura del universo.

    Galaxias espirales: Los molinetes cósmicos

    Algunas galaxias tienen forma de espiral como la nuestra. Tienen brazos curvados que hacen que parezcan molinetes. Las estrellas jóvenes queman mucho más caliente que las estrellas más viejas, así que las galaxias espirales son a menudo algunas de las más brillantes en el universo.

    La Vía Láctea es la galaxia en la que reside nuestro sistema solar. Es una galaxia espiral barrada, lo que significa que tiene una estructura de espiral con una barra central de estrellas que atraviesa su núcleo. Alrededor del 60% de las galaxias cercanas son espirales. Nuestra galaxia, la Vía Láctea, es un muy buen ejemplo de una.

    Galaxias elípticas: Formas redondeadas del cosmos

    Otras galaxias son lisas y tienen forma de óvalo. Se las denomina galaxias elípticas. Estas formaciones galácticas tienen características muy distintas a sus contrapartes espirales. Las galaxias elípticas tienen estructura esferoidal o elipsoidal y suelen contener solo estrellas, con poco gas y poco polvo.

    Las galaxias elípticas representan un tipo de estructura galáctica antigua. Dado que las estrellas que las componen se encuentran en una fase muy avanzada de evolución, se las considera el tipo de galaxia más antigua. Las galaxias conocidas de mayor tamaño son elípticas.

    Galaxias irregulares: Formas caóticas y enigmáticas

    También existen galaxias que no tienen forma ni de espiral ni de óvalo. Son de forma irregular y parecen manchas. Estas estructuras galácticas fascinantes ofrecen pistas sobre eventos cósmicos violentos. No tienen una forma definida y, a menudo, se forman por colisiones o interacciones con otras galaxias.

    La estructura interna de las galaxias

    Comprender la estructura interna de las galaxias nos permite apreciar la complejidad de estos sistemas cósmicos. Cada componente juega un papel crucial en el funcionamiento y evolución de la galaxia.

    Nuestra galaxia, la Vía Láctea, también tiene un agujero negro supermasivo en el medio. Este agujero negro central influye profundamente en la dinámica de toda la estructura galáctica. Se estima que las galaxias están compuestas en un 90% de materia oscura, aunque no se comprobó la existencia de esta última.

    Galaxias y el universo: Un contexto cósmico

    Las galaxias no existen aisladas en el espacio. Las galaxias no están simplemente esparcidas en el universo, sino que suelen formar parte de estructuras de mayor tamaño conocidas como cúmulos, los cuales a su vez pueden unirse y formar supercúmulos. Esta organización jerárquica del universo revela un patrón intrincado de agrupación gravitatoria.

    Actualmente, los astrónomos estiman que existen billones de galaxias en el universo observable. Se calcula que existen al menos dos billones de galaxias en el universo. Este número asombroso subraya la inmensidad del cosmos y nuestra insignificancia relativa dentro de él.

    Colisiones galácticas y el futuro de nuestras galaxias

    Las galaxias no permanecen estáticas en el espacio; interactúan constantemente entre sí. A veces, las galaxias se acercan demasiado y chocan entre sí. Nuestra Vía Láctea algún día chocará con Andrómeda, nuestro vecino galáctico más cercano. Sin embargo, no hay motivo para preocuparse. Las galaxias son tan grandes y están tan expandidas en los extremos que, aunque se choquen entre sí, los planetas y los sistemas solares a menudo no llegan a colisionar.

    Observar galaxias: Una ventana al pasado

    Cada vez que observamos una galaxia distante, estamos mirando el pasado. El telescopio espacial James Webb de la NASA ha tomado fotografías que muestran miles de galaxias. Esta imagen cubre un trozo de cielo de aproximadamente el tamaño de un grano de arena sostenido con el brazo extendido por alguien en la superficie de la tierra. Estos descubrimientos revolucionarios demuestran el poder de la tecnología moderna para revelar los misterios del universo.

    Vivimos en un momento extraordinario en la historia de la astronomía. Con telescopios cada vez más avanzados, continuamos revelando nuevas galaxias y descubriendo secretos sobre la formación y evolución de estas estructuras cósmicas. La investigación continua sobre galaxias no solo expande nuestro conocimiento científico, sino que también transforma nuestra perspectiva sobre nuestro lugar en el universo.

  • Andrómeda: La Galaxia Espiral Más Cercana a la Vía Láctea

    ¿Sabías que la galaxia de Andrómeda es el objeto más distante visible a simple vista desde la Tierra? Esta maravilla cósmica ha fascinado a la humanidad durante siglos, y con razón. Andrómeda la galaxia representa uno de los fenómenos más importantes del universo observable, siendo el hogar de billones de estrellas y planetas que desafían nuestra comprensión del cosmos. En este artículo, exploraremos los secretos de esta colosal estructura galáctica y descubriremos por qué continúa siendo objeto de estudio e inspiración para astrónomos en todo el mundo.

    ¿Qué es Andrómeda y por qué es tan importante?

    Andrómeda la galaxia, también conocida como Messier 31 o M31, es una galaxia espiral ubicada a aproximadamente 2.5 millones de años luz de la Tierra. Esta distancia colosal la convierte en la galaxia más cercana a nuestra Vía Láctea, estableciendo una relación gravitacional compleja entre ambas estructuras cósmicas. La importancia de estudiar Andrómeda radica en que nos proporciona información valiosa sobre cómo evolucionan las galaxias y cómo interactúan en el universo.

    El nombre “Andrómeda” proviene de la mitología griega, donde hace referencia a la princesa encadenada en la constelación homónima. Esta denominación poética refleja la belleza y el misterio que rodea a esta formación estelar, capturando la imaginación de observadores del cielo nocturno desde tiempos inmemoriales.

    Características físicas de la galaxia espiral Andrómeda

    Tamaño y estructura

    La galaxia de Andrómeda es significativamente más grande que nuestra Vía Láctea, extendiendo sus brazos espirales a lo largo de aproximadamente 220,000 años luz. Esta estructura monumental contiene alrededor de un billón de estrellas, comparado con los 200 a 400 mil millones de estrellas que estimamos en nuestra propia galaxia. La arquitectura de Andrómeda la galaxia presenta un núcleo denso rodeado de anillos concéntricos de estrellas y materia interestelar.

    Composición estelar

    La población de estrellas en Andrómeda incluye tanto estrellas jóvenes azules de corta vida como ancianas estrellas rojas. Esta diversidad estelar indica que la galaxia ha experimentado múltiples episodios de formación estelar a lo largo de su historia cósmica. Los cúmulos globulares rodean el disco galáctico, conteniendo algunas de las estrellas más antiguas del universo.

    El fascinante futuro: colisión con la Vía Láctea

    Una de las predicciones más intrigantes sobre Andrómeda la galaxia concierne a su destino futuro. Los estudios gravitacionales indican que dentro de aproximadamente 4.5 mil millones de años, Andrómeda colisionará con la Vía Láctea. Este evento cósmico no resultará en colisiones estelares significativas debido a las vastas distancias entre estrellas, pero sí causará una fusión gravitacional que transformará profundamente ambas galaxias.

    El resultado de esta colisión será la formación de una nueva galaxia, potencialmente llamada “Milkomeda” o “Láctea Andrómeda”. Esta fusión cósmica ejemplifica la naturaleza dinámica del universo y cómo las estructuras galácticas evolucionan a escalas de tiempo inimaginables.

    Observación de Andrómeda desde la Tierra

    Cómo observar la galaxia

    Una de las razones más emocionantes por las cuales Andrómeda la galaxia captura la atención de astrónomos aficionados es su visibilidad a simple vista. Durante noches despejadas, sin contaminación luminosa, esta maravilla cósmica es observable sin necesidad de telescopios. La mejor época para observarla es durante los meses de otoño e invierno en el hemisferio norte.

    Aunque a simple vista aparece como una mancha luminosa, los telescopios y binoculares revelan la estructura espiral compleja de Andrómeda. Fotografía de larga exposición permite capturar los detalles intrincados de sus brazos espirales y su halo de materia oscura.

    Herramientas de observación recomendadas

    Para observar adecuadamente Andrómeda la galaxia, se recomienda usar binoculares de al menos 10×50 de aumento o telescopios con objetivos de bajo aumento. Estos equipos proporcionan campos visuales suficientemente amplios para apreciar la extensión completa de la galaxia. Las cámaras digitales modernas pueden capturar detalles extraordinarios que el ojo humano no puede percibir directamente.

    Investigación científica y descubrimientos recientes

    El telescopio espacial Hubble y otras herramientas astronómicas han revolucionado nuestro entendimiento de Andrómeda la galaxia. Observaciones recientes han identificado nuevas poblaciones estelares, cartografiado regiones de formación estelar activa y refinado mediciones de masa galáctica. Estos descubrimientos contribuyen significativamente a nuestro conocimiento sobre la evolución galáctica.

    La detección de agujeros negros en el núcleo de Andrómeda proporciona información crucial sobre cómo estos objetos masivos influyen en la dinámica galáctica. Estudios espectrográficos revelan movimientos complejos de gas y plasma dentro de la estructura espiral, indicando procesos dinámicos continuos.

    El impacto cultural y científico de Andrómeda

    Andrómeda la galaxia ha inspirado no solo investigación científica rigurosa sino también la imaginación cultural humana. Desde la ciencia ficción hasta el arte visual, esta galaxia lejana representa la vastedad y el misterio del cosmos. Su visibilidad a simple vista la convierte en un puente tangible entre la experiencia cotidiana y la grandeza del universo.

    Los astrónomos continúan desarrollando nuevas técnicas y telescopios para profundizar nuestro conocimiento sobre esta galaxia extraordinaria. Cada observación nos acerca a respuestas sobre nuestro propio lugar en el universo y cómo las galaxias se forman, evolucionan y eventualmente se transforman a través de interacciones cósmicas. La próxima vez que levantes la vista hacia el cielo nocturno, recuerda que esa débil luz que ves es la luz de billones de estrellas viajando a través del espacio durante millones de años.

  • Holidays in Space: 25 Years of Space Station Celebrations

    In the quarter century that humans have lived and worked aboard the International Space Station, astronauts and visitors from around the world have celebrated countless holidays more than 250 miles above Earth while traveling 17,500 miles per hour. Crews have marked Thanksgiving, Christmas and Hanukkah, New Year’s, birthdays, and national holidays as they circle the planet every 90 minutes.  

    Holiday traditions in space often look familiar, just adapted for microgravity. NASA astronauts share special meals packed by the Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston, where crews select their menus with help from nutritionists and food scientists before launch. Cargo launches arriving before special occasions often deliver Holiday Bulk Overwrapped Bags filled with foods like clams, oysters, turkey, green beans, and smoked salmon, along with shelf-stable treats such as candies, icing, almond butter, and hummus. 

    Crew members exchange small gifts that float through the modules, add festive decorations around the station, and connect with loved ones through video calls. Astronauts also send holiday greetings to Earth, a reminder that even in space, home is never far away. 

    The Expedition 73 crew share a holiday message aboard the International Space Station in Dec. 2025.

    Enjoy 25 years of celebrations below. 

    The space station remains a vital scientific platform, providing the foundation needed to survive and thrive as humanity ventures into the unexplored territories of our universe.

    Learn more about the space station’s 25 years of continuous human presence and explore stories, images, and research at:

    https://www.nasa.gov/international-space-station/iss25

  • Sentinels in the Sky: 50 Years of GOES Satellite Observations

    Feature Article header

    15 min read

    Sentinels in the Sky: 50 Years of GOES Satellite Observations

    GOES 50th Anniversary Logo

    Introduction

    In an era where satellite observations of Earth are commonplace, it’s easy to forget that only a few decades ago, the amount of information available about the state of Earth’s environment was limited; observations were infrequent and data were sparsely located.

    As far back as the late 1950s, there were primitive numerical weather prediction (NWP) models that could produce an accurate (or what a forecaster would call “skillful”) forecast given a set of initial conditions. However, the data available to provide those initial conditions at that time were limited. For example, the weather balloon network circa 1960 only covered about 10% of the troposphere and did not extend into the Southern Hemisphere, the tropics, or over the ocean.

    Weather forecasters of the pre-satellite era typically relied upon manual analysis of plotted weather maps, cloud observations, and barometric pressure readings when making forecasts. They combined this limited dataset with their own experience issuing forecasts in a particular area to predict upcoming weather and storm events. While those pioneering forecasters made the most of the limited tools available to them, poor data – or simply the lack of data – inevitably led to poor forecasts, which usually weren’t accurate beyond two days. This time duration was even less than that in the Southern Hemisphere. As a result, the forecasts issued typically lacked the specificity and lead time required to adequately prepare a community before a snowstorm or hurricane.

    Although the first satellite observations (e.g., from the Television Infrared Observation Satellite (TIROS) program or early Nimbus missions) whet forecasters’ appetites for what might be possible in terms of improving weather forecasting, polar orbiting satellites could only observe a given location twice a day. Those snapshots from above were insufficient for tracking rapidly evolving weather phenomena (e.g., thunderstorms, tornadoes, and intensification of hurricanes). Beyond cloud information, forecasters required data on temperature, moisture, and wind profiles in the atmosphere in addition to output from NWP models.

    It was the advent of geostationary observations (also called geosynchronous) that truly led to revolutionary advances in weather forecasting. This approach enabled continuous monitoring of the atmosphere over a particular region on Earth. Hence, the development and evolution of NOAA’s Geostationary Operational Environmental Satellites (GOES) has been a major achievement for weather forecasting.

    For 50 years, GOES have kept a constant vigil over the Western Hemisphere and monitored the Sun and the near-Earth environment – see Visualization 1. Since 1975, the National Oceanic and Atmospheric Administration (NOAA) and NASA have partnered to advance NOAA satellite observations from geostationary orbit. GOES satellites serve as sentinels in the sky, keeping constant watch for severe weather and environmental hazards on Earth as well as dangerous space weather. This narrative will focus on the development and evolutions of the Earth observing instruments on GOES with a mention of several of the space weather instruments.

    Visualization 1. A YouTube video, created for the 50th anniversary of GOES, examines the partnership between the National Oceanic and Atmospheric Administration (NOAA) and NASA to advance NOAA satellite observations from geostationary orbit to monitor for weather and environmental hazards on Earth as well as dangerous space weather.
    Visualization credit: NOAA/NASA

    Reaching a half-century of operation is a remarkable achievement for GOES, or any mission. The Earth Observer has published several articles chronicling the milestones of Earth observing missions, including The Vanguard of Earth-Observing Satellites [March–April 2019, 31:2, 7–18], Nimbus Celebrates Fifty Years [March–April 2015, 27:2, 18–31], and NASA Participates in Pecora 22 Symposium and Celebrates Landsat 50th Anniversary [Nov.–Dec. 2022, 34:6, 4–9]. This article, reflecting on GOES accomplishments, will join that list.

    The article provides the history leading up to the development of GOES and traces the development of GOES from the earliest launch in 1975 to the last launch in late 2024, which completed the GOES–R series – see Figure 1. The article ends with a look at the plans for Geostationary Extended Observations (GeoXO), which seeks to extend the GOES legacy to the middle of the 21st century, followed by some concluding thoughts.

    GOES timeline
    Figure 1. Timeline of GOES launches including key technological developments associated with each “generation” of satellites.
    Figure credit: NOAA/NASA

    GOES Heritage Missions: ATS and SMS

    The heritage of GOES can be traced to the Applications Technology Satellite (ATS) series, which consisted of a set of six NASA spacecraft launched from December 7, 1966 to May 30, 1974. These missions were created to explore and flight-test new technologies and techniques for communications, meteorological, and navigation satellites. ATS was a multipurpose engineering satellite series, testing technology in communications and meteorological applications from geosynchronous orbit.

    ATS satellites aimed to test the theory that gravity would anchor a satellite in a synchronous orbit, 22,300 statute miles (37,015 km) above the Earth. This orbit allowed the satellites to move at the same rate as the Earth, thus seeming to remain stationary. Although the ATS satellites were intended mainly as testbeds, they also collected and transmitted meteorological data and functioned at times as communications satellites. For example, ATS-6, the last in the series, was the first to use an education and experimental direct broadcast system, which is now commonplace on Earth observing satellites (e.g., Terra).

    Also included in the ATS payload was a spin-scan camera that Verner Suomi and associates had developed in the early 1960s. The device was so named because it compensated for the motion of the satellite and still obtained clear visible (television-like) photographs. The University of Wisconsin, Madison’s (UWM) Space Science and Engineering Center (SSEC), which Suomi and colleagues at UWM had just recently established, funded the camera’s development and NASA approved its inclusion as part of the ATS payload. The spin-scan camera on ATS-1 produced spectacular full disk images of Earth; a few years later the camera on ATS-3 produced similar images, this time in color.

    Although designed primarily to test and demonstrate new technologies, imagery captured by the ATS payload led to some serendipitous science. Analysis of spin-scan camera images, while labor intensive and expensive and not practical for use operationally, led to new discoveries about storm origins that had never before been available. For example, Tetsuya Fujita analyzed ATS camera images of storms in the Midwest United States in 1968 as part of his in-depth studies of tornadoes. This work led to the development of the Fujita Scale for tornado intensity. Also in 1968, “Hurricane Hunter” aircraft data and radar imagery, along with ATS images allowed meteorologists to observe the complete life cycle of Hurricane Gladys. Today, this approach is routine, but at the time it was groundbreaking.

    Following the success of the ATS “technology demonstration” series, NASA and NOAA began to develop an operational prototype of the dedicated geosynchronous weather satellite, the Synchronous Meteorological Satellite (SMS). SMS-1 was launched in 1974, with SMS-2 following the next year. Owned and operated by NASA, the SMS satellites were the first operational satellites designed to sense meteorological conditions in geostationary orbit over a fixed location on the Earth’s surface. The ATS spin-scan camera manufacturers – SSEC and Santa Barbara Research – altered their ATS camera design, replacing the television-like photographic apparatus with an imaging radiometer with eight visible and three infrared channels. The revised instrument became known as the Visible and Infrared Spin-Scan Radiometer (VISSR). They also added a telescope that would allow for high-resolution imaging of smaller portions of Earth, allowing researchers to study storm formation in more detail.

    First Generation: GOES 1–3

    The GOES era began in October 1975 with the launch of GOES-1 (initially called SMS-3). The first three GOES missions were spin-stabilized satellites. The VISSR instrument, initially developed for the SMS missions, became the workhorse instrument for the first generation of GOES missions. VISSR provided high-quality day and night observations of cloud and surface temperatures, cloud heights, and wind fields – see Figure 2.

    The early GOES missions also focused on monitoring space weather. The first generation of GOES featured a Space Environment Monitor (SEM) to measure proton, electron, and solar X-ray fluxes as well as magnetic fields around the satellites. This technology became standard on all subsequent GOES satellite missions.

    First GOES Image
    Figure 2. First image from GOES-1 obtained on October 25, 1975.
    Figure credit: NOAA

    The new satellites quickly began providing critical information about the location and trajectory of hurricanes. The earliest generation of GOES provided crucial data about Tropical Storm Claudette and Hurricane David in 1979 – both of which devastated regions of the United States.

    Second Generation: GOES 4–7

    The second generation of GOES began in 1980, with the launch of GOES-4. NASA, NOAA, and SSEC collaborated to make further enhancements to the VISSR instrument, adding temperature sounding capabilities. The development of the VISSR Atmospheric Sounder (VAS) was particularly helpful for the study and forecasting of severe storms. While there were sounders on polar orbiting satellites of this era (e.g., TIROS and Nimbus), polar orbiters, which take measurements of the same location twice daily, often missed events that occurred on shorter timescales, such as thunderstorms. By contrast, VAS on GOES could image the same area every half-hour, allowing for more detailed tracking of storms, leading to improved severe storm forecasting and enabling more advanced warning of the storm’s arrival. VAS became the basis for the establishment of an extensive severe storm research program during the 1980s.

    The second generation GOES missions were capable of obtaining vertical profiles of temperature and moisture throughout the various layers of the atmosphere. This added dimension gave forecasters a more accurate picture of a storm’s extent and intensity, allowed them to monitor rapidly changing events, and helped to predict fog, frost, and freeze, as well as dust storms, flash floods, and even the likelihood of tornadoes.

    The second generation of GOES helped forecasters track and forecast the impacts from the 1982–1983 El Niño event – one of the strongest El Niño–Southern Oscillation (ENSO) events on record that led to significant economic losses. This generation of GOES satellites also gave forecasters vital information about Hurricane Juan in 1985 and Hurricane Hugo in 1989, both destructive storms for areas of the United States – see Figure 3.

    NOAA image of Hurricane Hugo
    Figure 3. GOES-7 infrared image of Hurricane Hugo on September 22, 1989.
    Figure credit: NOAA

    GOES-7, launched in 1987, added the new capability of detecting distress signals from emergency beacons. These GOES satellites have helped to rescue thousands of people as part of the Search and Rescue Satellite-Aided Tracking (SARSAT) system developed to detect and locate mariners, aviators, and other recreational users in distress. This system uses a satellite network to detect and locate distress signals from emergency beacons on aircraft and vessels and from handheld personal locator beacons (PLBs) quickly. The SARSAT transponder on GOES immediately detects distress signals from emergency beacons and relays them to ground stations. In turn, this signal is routed to a SARSAT mission control center and then sent to a rescue coordination center, which dispatches a search and rescue team to the location of the distress call.

    Third Generation: GOES 8–12

    In 1994, advances in two technologies enabled another significant leap forward in capabilities for GOES: improved three-axis stabilization of the spacecraft and separating the imager and sounder into two distinct instruments with separate optics (e.g., GOES Imager and GOES Sounder). Simultaneous imaging and sounding gave forecasters the ability to use multiple measurements of weather phenomena, resulting in more accurate forecasts. Another improvement was flexible scanning, where the satellites could temporarily suspend their routine scans of the hemisphere to concentrate on a small area to monitor quickly evolving events. This capability allowed meteorologists to study local weather trouble spots, improving short-term forecasts.

    In 2001, forecasters used GOES-8 to track the slow-moving remnants of Tropical Storm Allison, stalled over the Gulf Coast. During the next four days, Allison dropped more than three feet of rain across portions of coastal Texas and Louisiana, causing severe flooding, particularly in the Houston area.

    GOES-12, the final satellite in the third generation, launched in 2001. It included a new Solar X-ray Imager (SXI) as part of its payload. SXI was the first X-ray telescope that could take a full-disk image of the Sun, which enabled forecasters to detect solar storms and better monitor and predict space weather that could affect Earth. Some geomagnetic storms can damage satellites, disrupting communications and navigation systems, impacting power grids, and harming astronauts in space.

    Fourth Generation: GOES 13–15

    By the mid-2000s, the fourth generation of GOES, known as the GOES-N series, enhanced the mission with improvements to the Image Navigation and Registration subsystem, including star-trackers, to better determine the coordinates of intense storms. Improvements in batteries and power systems allowed this generation to provide continuous imaging. GOES-13 also added an Extreme Ultraviolet Sensor, which monitored ultraviolet emissions from the Sun as well as the solar impact on satellite orbit drag and radio communications.

    In April 2011, GOES-13 monitored the record-breaking tornado outbreak that hit the Southeastern United States – see Visualization 2. From April 25–28, 362 tornadoes carved a path across a dozen states, leaving an estimated 321 people dead. In 2012, NOAA operated GOES-14, the on-orbit backup satellite, in a special rapid-scan test mode, providing one-minute imagery of Tropical Storm Isaac and Hurricane Sandy, both destructive storms.

    Super Tornado Outbreak animation
    Visualization 2. GOES-13 visible imagery showing clusters of severe thunderstorms on April 27, 2011, that spawned several tornadoes.
    Visualization credit: NOAA

    The GOES-R Series: GOES-16–19

    NASA launched the first satellite in the GOES-R Series for NOAA in 2016. The GOES-R Series brought new state-of-the-art instruments into orbit, including the Advanced Baseline Imager (ABI), a high-resolution imager with 16 channels, and the Geostationary Lightning Mapper, the first lightning mapper flown in geostationary orbit. The satellites also gained the ability to concurrently provide a full-disk image every ten minutes, a contiguous United States image every five minutes, and two smaller localized images every 60 seconds (or one domain every 30 seconds). For the first time, meteorologists could see the big picture while simultaneously zooming in on a specific weather event or environmental hazard.

    The latest GOES satellite series brought revolutionary improvements, providing minute-by-minute information to forecasters, decision-makers, and first responders to give early warning that severe weather is forming, monitor and track the movement of storms, estimate hurricane intensity, detect turbulence, and even spot fires before they are reported on the ground.

    The GOES-R Series satellites also carry a suite of sophisticated solar imaging and space weather monitoring instruments. The final satellite in the series, GOES-19, is also equipped with NOAA’s first compact coronagraph (CCOR-1). This instrument images the solar corona (the outer layer of the Sun’s atmosphere) to detect and characterize coronal mass ejections, which can disrupt Earth’s magnetosphere, leading to geomagnetic storms, auroras, and potential disruptions to technology, including electricity and satellite communications.

    In 2017, Hurricane Maria knocked out Puerto Rico’s radar just before landfall. With this critical technology disabled and a major hurricane approaching, forecasters used 30-second data from GOES-16 to track the storm in real-time – see Visualization 3. The satellite’s rapid scanning rate allowed forecasters to analyze cloud patterns and understand the evolution of Maria’s position and movement as well as discern the features within the hurricane’s eye to estimate intensity.

    Visualization 3. GOES-16 GeoColor image of Hurricane Maria over Puerto Rico as it made landfall on September 20, 2017.
    Visualization credit: NOAA/CIRA

    The most recent generation of satellites also significantly improved fire detection and monitoring. During California’s Camp Fire in 2018, GOES-16 played a crucial role in monitoring the fire’s progression and smoke plumes, assisting the efforts to contain the fire – see Visualization 4. The satellite provided an extremely detailed picture of fire conditions, quick detection of hot spots, and the ability to track the fire’s progression and spread in real-time. Forecasters used ABI data from GOES-16 to track the fire’s movement and intensity even before ground crews could fully see it due to thick smoke. Not only did the data help firefighters fight the fire more effectively, but it also helped keep firefighters safe during the disaster.

    Visualization 4. Fire hot spots and a large plume of smoke are seen in this GOES-16 fire temperature red-green-blue imagery with GeoColor enhancement of the Camp Fire in northern California on November 8, 2018.
    Visualization credit: NOAA/CIRA

    What’s Next? GeoXO

    NOAA, NASA, and industry partners are now developing the future generation of geostationary satellites. The Geostationary Extended Observations (GeoXO) will provide continuity of observation from geostationary orbit as the GOES-R series nears the end of its operational lifetime. The first GeoXO launch is planned for launch in the early 2030s.

    GeoXO will prioritize and advance forecasting and warning of severe weather. Similar to GOES, the information GeoXO gathers will also be used to detect and monitor environmental hazards (e.g., wildfires, smoke, dust, volcanic ash, drought, and flooding).

    The more advanced observing capabilities will allow forecasters to provide earlier warning to decision makers, improve the skillfulness of short-term forecasting, and allow for greater lead times for warnings of severe weather and other hazards that threaten the security and well-being of everyone in the Western Hemisphere well into the 2050s.

    Conclusion

    For 50 years, GOES satellites have provided the only continuous coverage of the Western Hemisphere. Their data have been the backbone of short-term forecasts and warnings of severe weather and environmental hazards. GOES detect and monitor events as they unfold, providing forecasters with real-time information to track hazards as they happen. They are also part of a global ring of satellites that contribute data to numerical weather prediction models. GOES also monitors the Sun and provides critical data for forecasts and warnings of space weather hazards.

    Each successive generation of GOES has brought advancements and new capabilities that have improved the skill of short-term weather forecasts and our ability to prepare for and respond to severe weather and natural disasters. The information the satellites supply is essential for public safety, protection of property, and efficient economic activity. Meteorologists, emergency managers, first responders, local officials, aviators, mariners, researchers, and the general public depend on GOES. Everyone in the Western Hemisphere benefits from GOES data each and every day.

    Black Separator Line

    Acknowledgment

    The primary source for the information provided in the section on “GOES Heritage Missions” was Conway, Eric: Atmospheric Science at NASA: A History (2008), pp. 140–41.

    Black Separator Line

    Michelle Smith
    NOAA Satellite and Information Service
    michelle.smith@noaa.gov

    Alan Ward
    NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
    alan.b.ward@nasa.gov

    Share

    Details

    Last Updated

    Dec 22, 2025

    Related Terms

  • Keeping Up with PACE: Summary of the 2025 PAC3 Meeting

    12 min read

    Keeping Up with PACE: Summary of the 2025 PAC3 Meeting

    Introduction

    Launched in Feb. 2024, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a cornerstone of Earth system science designed to deepen our understanding of how these environmental and biological components come together to influence our climate, carbon cycle, and ecosystems. PACE has funded three supporting components: the PACE Postlaunch Airborne eXperiment (PACE–PAX), the third PACE Science and Applications Team (SAT3), and the PACE Validation Science Team (PVST). Each group serves distinct but interdependent roles in advancing the scientific objectives of the mission through product development and rigorous assessment of data quality.

    Recognizing the interconnected focus areas among these groups, the organizers consolidated this year’s separate gatherings into one comprehensive event – the “PAC3” meeting. The combined meeting took place from Feb. 18–21, 2025 at NASA’s Goddard Institute for Space Studies (GISS) in New York City, just 10 days after the first anniversary of the PACE launch – see Photo 1 and Photo 2.

    PACE photo 1
    Photo 1. Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) scientists celebrated the one-year anniversary of the satellite’s orbit (February 8, 2025) during the PAC3 meeting. A “birthday” celebration took place during the meeting, complete with cake. Shown here are [left to right]: Ivona Cetinić [NASA’s Goddard Space Flight Center (GSFC)/Morgan State University, Ocean Ecology Laboratory (OEL)—PACE Validation Science Team lead, PACE-PAX Deputy Mission Scientist], Erin Urquhart Jephson [NASA Headquarters (HQ)—Program Manager of the NASA Earth Action Water Resources Program, PACE Program Applications Lead], Cecile Rousseaux [GSFC, OEL—PACE Science and Applications Team Lead], Kirk Knobelspiesse [GSFC, OEL—PACE Polarimeter Lead, PACE-PAX Mission Scientist], Jeremy Werdell [GSFC, OEL—PACE Project Scientist], Laura Lorenzoni [NASA HQ—Ocean Biology and Biogeochemistry Program Scientist, PACE Program Scientist], Brian Cairns [NASA Goddard Institute for Space Studies (GISS)—PACE Deputy Project Scientist, PACE-PAX Deputy Mission Scientist], and Bryan Franz [GSFC, OEL—PACE Science Data Segment Lead].
    Photo credit: Judy Alfter [NASA Ames Research Center (ARC)/Bay Area Environmental Research Institute (BAER)]
    PACE photo 2
    Photo 2. With over 100 in-person and virtual attendees, the PAC3 meeting brought together representatives from each of the three overlapping activities for discussions on the status and plans for Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and related activities. The recently renovated meeting space at the NASA Goddard Institute for Space Studies (GISS) in New York City provided an ideal venue for interdisciplinary discussions and knowledge-sharing.
    Photo credit: Sabrina Hosein [NASA GISS/Adnet Systems]

    The PACE Mission and Payload

    PACE’s long-term objectives focus on understanding ocean and terrestrial ecosystem productivity, detecting harmful algal blooms, exploring relationships between aerosols and clouds, and integrating these insights into Earth system science to enhance both research and decision-making capacities. These goals are accomplished by the advanced suite of three complementary instruments.

    The Ocean Color Instrument (OCI) is a hyperspectral radiometer that measures ocean ecosystems’ biological, biogeochemical, and physical dynamics by capturing light over hundreds of narrow wavelengths from the deep ultraviolet to the infrared. Additionally, the broad spectral range and spectral resolution of the measurements allow the research community to characterize aerosols, clouds, land surfaces, and trace gases.

    The Hyper-Angular Rainbow Polarimeter #2 (HARP2) is a multiangle polarimeter with a wide swath, four visible–near infrared (VIS–NIR) spectral channels, and between 10 and 60 viewing angles (i.e., the hyperangular capability) in each spectral channel. HARP2 is designed for retrieval of cloud and aerosol properties.

    The Spectropolarimeter for Planetary Exploration (SPEXone) is also a multiangle polarimeter with different and complementary properties to HARP2. SPEXone has a narrow swath and five viewing angles with a spectral sensitivity of 100 bands from the ultraviolet to the near infrared. It is optimized for the retrieval of aerosol properties.

    More details about the PACE mission can be found at its website.

    PACE Mission Updates

    The PAC3 meeting included a review of the PACE mission’s status and recent developments. This overview included meeting status updates on OCI, SPEXone, and HARP2 from their respective instrument scientists: Gerhard Meister [NASA’s Goddard Space Flight Center (GSFC)], Otto Hasekamp [Space Research Organization, Netherlands (SRON)], and Vanderlei Martins [University of Maryland, Baltimore County (UMBC)]. This section of the meeting covered updates on the early mission data availability and accessibility, including a review of the PACE data website. These details are summarized on the PACE data availability website and the ‘help hub’.

    OCI

    Meister reported that OCI has exceeded radiometric performance requirements, delivering highly accurate hyperspectral data. He noted that, with the release of Version 3 (V3) data reprocessing, OCI calibration now uses only on-orbit solar diffuser measurements to improve temporal stability. Key improvements of V3 include enhanced corrections for atmospheric absorbing gas effects and updated bidirectional reflectance distribution function (BRDF) parameters. Meister said that analysis of temporal trends has revealed solar diffuser degradation in the ultraviolet range, with ongoing corrections being made. For example, he cited how the team is using the solar diffuser that is only exposed once a month to correct the observations of the solar diffuser that is exposed daily. He also discussed other anomalies, including striping around 10° scan angle, reduced accuracy in the 590–610 nm region and implementation of crosstalk correction to compensate for reduced accuracy of wavelength measurements in the ultraviolet (i.e., for wavelengths shorter than 340 nm).

    SPEXone

    Hasekamp reported that SPEXone is delivering quality radiometric and polarimetric data. The team has developed the Remote Sensing of Trace Gases and Aerosol Products (RemoTAP) algorithm, an advanced aerosol retrieval algorithm that determines the total atmospheric column of aerosols, aerosol size distribution information, energy absorbed by aerosols, and vertical extent of the aerosol layer. Hasekamp showed that observations demonstrate minimal bias in size distribution retrievals across low aerosol optical depth (AOD) environments and these observations have good agreement with observations from ground-based Sun photometers that are part of the Aerosol Robotic Network (AERONET). He added that future updates will address radiometric calibration discrepancies with OCI.

    HARP2

    Martins reported that HARP2 continues to perform well and is delivering polarization-sensitive observations of aerosols and clouds. He noted that plans include making continued geolocation and calibration refinements, as well as cross-calibration with OCI and SPEXone to harmonize all the PACE radiometric data products.

    PACE Data Access and Website Resources

    Several presentations outlined the tools and platforms available to make data from the PACE mission accessible to the broader scientific community.

    Alicia Scott [GSFC/Science Applications International Corporation (SAIC)] described capabilities provided by the Ocean Biology Distributed Active Archive Center (OB.DAAC). The OB.DAAC stores and processes data from all PACE instruments using tools, such as Earthdata Search and earthaccess Python libraries that enable user-friendly data retrieval pipelines. Training resources and tutorials are available to streamline usage.

    Carina Poulin [GSFC/Science Systems and Applications, Inc (SSAI)] provided an overview of the PACE Data Website, which serves as a central hub for accessing datasets, reprocessing information, and product tutorials. The V3 landing page provides details on calibration updates, validation results, and pathways for integrating PACE data into user workflows.

    EarthCARE Mission Updates

    Many of PACE’s science objectives dovetail with that of the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE), a joint venture by the European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA). Hence, the PAC3 meeting included participation from the EarthCARE teams. The EarthCARE observatory has four advanced instruments: a high spectral resolution ATmospheric LIDar (ATLID), a doppler capable Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI), and a Broad-Band Radiometer (BBR). The measurements from EarthCARE complement those of PACE and enable cross validation, enriching scientific knowledge of complex Earth system processes. The synergistic nature of these missions also means that validation activities for one are well suited to both. For example, the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) field campaign (discussed later in this article) incorporated validation activities for EarthCARE, and EarthCARE funded campaigns have made observations during PACE overpasses.

    Rob Koopman [ESA] outlined progress on EarthCARE, including preparation for validation activities as part of ESA and JAXA’s joint efforts. He reported that the mission’s ATLID lidar data products are in excellent alignment with airborne High Spectral Resolution Lidar (HSRL) datasets (flown during PACE-PAX). Koopman showed preliminary results from underflights with NASA aircraft that demonstrate high accuracy for cloud and aerosol retrieval, albeit with some calibration challenges that will require further refinement. He also said that several EarthCARE–PACE mutual validation campaigns are planned to ensure inter-mission consistency across critical science products.

    PACE–PAX Sessions

    The first component of the PAC3 meeting focused on PACE–PAX, a field campaign conducted in California and adjacent coastal regions during Sept. 2024 – see Figure 1. Kirk Knobelspiesse [GSFC, OEL—PACE Polarimeter Lead, PACE-PAX Mission Scientist], Ivona Cetinić [NASA’s Goddard Space Flight Center (GSFC)/Morgan State University, Ocean Ecology Laboratory (OEL)—PACE Validation Science Team lead, PACE-PAX Deputy Mission Scientist], and Brian Cairns [NASA Goddard Institute for Space Studies (GISS)—PACE Deputy Project Scientist, PACE-PAX Deputy Mission Scientist] led the campaign, which, in addition to personnel from most NASA Centers, had participation from academia (e.g., University of Maryland, Baltimore County), other government agencies (e.g., Naval Postgraduate School and National Oceanic and Atmospheric Administration), and international space agencies (e.g., Space Research Organization, Netherlands).

    PACE photo 3
    Figure 1. Montage of activities during the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE–PAX) field campaign, which successfully concluded on Sept. 30, 2024. The campaign made atmospheric, ocean, and land surface measurements to validate observations from the recently launched NASA PACE and European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) missions. Clockwise from top left: Mike Ondrusek [NOAA R/V Shearwater Mission Scientist] waves to the Naval Postgraduate School (NPS) Twin Otter as it performs a low altitude sample. Photo of the Bridge fire from Kirt Stallings [NASA ARC Earth Resources-2 (ER-2) Pilot]. Carl Goodwin [NASA/Jet Propulsion Laboratory] performs calibration at Ivanpah Playa, CA, the primary reference site for space-based remote sensing observations located in the Mojave Desert. Scott Freeman and Harrison Smith [both GSFC] deploy instrumentation from the R/V Shearwater in the Santa Barbara Channel. Instrument integration on the NASA ER-2 in preparation for PACE-PAX. San Francisco observed by the NPS Twin Otter as it samples at low altitude over the San Francisco Bay. The R/V Shearwater seen from the NPS Twin Otter. 
    Figure credit(s): Clockwise from top left: NASA; Kirt Stallings; Regina Eckert [NASA/Jet Propulsion Laboratory]; Luke Dutton [National Oceanic and Atmospheric Administration]; Martijn Smit [Space Research Organization, Netherlands]; Luke Ziemba [NASA’s Langley Research Center (LaRC)]; Luke Ziemba.

    Campaign Overview

    The PACE–PAX mission supported the PACE Science Data Product Validation Plan. This included validation of new PACE and EarthCARE products, data collection during instrument overpasses, verification of radiometric and polarimetric measurements, and targeted investigation of region-specific phenomena (e.g., multilayer aerosols and phytoplankton blooms).

    Operational Highlights

    PACE–PAX used a diverse array of platforms to collect atmospheric and oceanic data, including aircraft [e.g., NASA Earth Resources-2 (ER-2) and the Naval Postgraduate School’s Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter], research vessels (NOAA’s R/V Shearwater and the 30-foot sailboat R/V Blissfully), and ground-based instruments such as Sun photometers and lidars. Key achievements include 13 ER-2 and 17 Twin Otter science flights, 15 RV Shearwater and 9 R/V Blissfully day cruises. These flights and ocean surveys supported 16 days of observations during a PACE overpass, six days of observations during an EarthCARE overpass, ground vicarious calibration at Ivanpah Playa, CA, numerous overflights of AERONET ground sites. Beyond validation, several unique events were observed that may be of interest for scientific purposes. Intense wildfires (e.g., the Bridge, Airport, and Line fires in 2024) were observed in Southern California in mid-September, while a red tide outbreak was observed later in the month along the Northern California coast – see Figure 2. Additionally, elements of the PVST coordinated their own validation efforts with the PACE–PAX campaign.

    PACE photo 4
    Figure 2. Red tide blooms in Northern California as seen from three remote sensing tools on the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE–PAX). [Left] An image taken from the NPS Twin Otter on Sept. 24, 2024. [Right] The PACE Ocean Color Instrument (OCI) image collected on Sept. 27, 2024 with modified red-tide index applied to OCI data. [Center Inset] An Imaging FlowCytobot (IFCB) image taken on Sept. 27, 2024 at the Santa Cruz, CA pier.
    Figure Credits: [Left] Eddie Winstead [NASA’s Langley Research Center (LaRC)]; [right] NASA; [inset] Clarissa Anderson [University of California, San Diego]

    Preliminary Findings

    Highlights of the PACE-PAX sessions demonstrated:

    • validation of EarthCARE and PACE aerosol and cloud products using the HSRL2 on NASA ER-2,
    • validation of PACE cloud products using polarimeters operating on the NASA ER-2 and in situ sensors on the CIRPAS Twin Otter,
    • numerous successful matchups of hyperspectral data from OCI on PACE with field measurements of chlorophyll-a captured during ship campaigns, and
    • observations of diverse phenomena (e.g., marine stratocumulus clouds and transported wildfire aerosols over clouds), which supported the testing of new retrieval algorithms.

    The early results show the critical role that validation activities, such as PACE–PAX, play in creating a bridge between orbital science and ground truth.

    PACE Science and Application Team (SAT3) Session

    SAT3, with a focus on both science and applications, offered a compelling second component of the PAC3 meeting. The Earth Observer has previously reported on PACE applications, most recently in the 2023 article, Preparing for Launch and Assessing User Readiness: The 2023 PACE Applications Workshop [Nov–Dec 2023, 35:6, 25–32]. The SAT3 team convened during PAC3 to explore how PACE data could enhance research in diverse scientific fields and support applied uses for societal benefit. Dedicated sessions provided updates on ongoing NASA-funded projects to retrieve new geophysical variables, improve data assimilation, and refine product development pipelines.

    SAT3 teams presented early results including studies that use PACE’s OCI to make pigment-specific absorption measurements, study diatom biomass retrieval, and gather chlorophyll concentration estimation. These studies emphasized new tools for tracking individual phytoplankton groups, such as diatoms and cyanobacteria that are vital for ecosystem research and understanding phytoplankton dynamics. Participants also showcased efforts to develop predictive models for the detection of harmful algal blooms (HABs) and improvement of early warning systems to mitigate public health impacts and economic consequences in both coastal regions and the Great Lakes. Several presentations highlighted new aerosol absorption and scattering measurements that are using polarimetry (i.e., SPEXone and HARP2) and how these findings are being incorporated into models of aerosol–cloud radiative forcing. Presenters also described how machine learning tools can integrate PACE measurements into Earth system models, through innovations in data assimilation, with promising results for global climate monitoring.

    The SAT3 discussions highlighted PACE’s potential to impact disciplines ranging from oceanography to climate science.

    PACE Validation Science Team Sessions

    Sessions dedicated to the PACE PVST emphasized the ongoing role of PVST initiatives in confirming the reliability, accuracy, and long-term stability of PACE data products. Topics of focus for the PVST group included algorithm development and validation, cross-mission synergies, field-based campaign integration, and cloud products.

    Some of the presenters shared updates on validation pipelines for radiometric and polarimetric products, with an emphasis on comparing against well-characterized datasets from AERONET Sun photometers, HSRL, and the Pan-and-Tilt Hyperspectral Radiometer (PANTHR) developed by Vlaams Instituut voor de Zee (VLIZ), or the Flanders Marine Institute, Belgium – see Photo 3. This radiometer was installed on a 30-m (~98-ft) tower in the Chesapeake Bay in May 2024 and is part of WATERHYPERNET network, which seeks to provide time series of hyperspectral water reflectance data from oceanic, coastal, and inland waters for the validation of satellite data at all wavelengths in the range 400–900 nm.

    PACE photo 5
    Photo 3. Inia Soto Ramos [Goddard Space Flight Center/Morgan State University] leads a Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Validation Science Team (PVST) breakout group discussion.
    Photo credit: Judy Alfter [NASA Ames Research Center (ARC)/ Bay Area Environmental Research Institute (BAER)]

    Reports from PVST members highlighted how data from PACE–PAX campaigns and satellite overpasses are contributing to the validation of error budgets developed prelaunch and refined uncertainty characterization. Other presentations highlighted the development of validation strategies for PACE-derived cloud properties, including cloud optical thickness, top height, and droplet size distributions with significant contributions from EarthCARE observations. Ocean observation validation was represented as well, with presentations from many groups that are focusing on retrieval of not only oceanic optical properties but biological components. This data offers crucial validation for the advanced phytoplankton composition and general ocean productivity products from PACE.

    The PVST’s work continues to provide the foundation for confidence in PACE data products. Their accuracy ensures broad usability of those products across global science applications.

    Conclusion

    The PAC3 meeting, held at NASA’s GISS, highlighted the collective efforts of the PACE mission’s diverse teams to address a broad range of Earth system science challenges. By combining the meetings for PACE–PAX, SAT3, and PVST, participants were able to strengthen collaborations, align ongoing efforts, and lay the groundwork for future research and validation activities.

    Roundtable discussions and team updates also revealed the critical role of PACE in addressing long-standing Earth system science questions, such as understanding the influence of aerosols on cloud formation and characterizing the impacts of oceanic changes on global biogeochemical cycles at a global scale. The meeting concluded with participants compiling action items for further exploration. Topics identified for future efforts included strategies for ensuring long-term data calibration, improving data delivery pipelines, and refining algorithm development processes.

    This meeting was one of the last significant events hosted at GISS before the facility’s closure at the end of May 2025. The findings and outcomes from PAC3 continue to inform and inspire PACE mission science, further enhancing its importance in advancing our understanding of the Earth system.

    Kirk Knobelspiesse
    NASA’s Goddard Space Flight Center
    kirk.d.knobelspiesse@nasa.gov 

    Cecile S. Rousseaux
    NASA’s Goddard Space Flight Center
    cecile.s.rousseaux@nasa.gov

    Ivona Cetinić
    NASA’s Goddard Space Flight Center/Morgan State University
    ivona.cetinic@nasa.gov

    Andrew Sayer
    NASA’s Goddard Space Flight Center
    andrew.sayer@nasa.gov

    Share

    Details

    Last Updated

    Dec 22, 2025

    Related Terms