Author: esteban

  • Guía Completa para una Dieta Equilibrada y Saludable

    Introducción a la Alimentación Saludable

    Una dieta equilibrada es la base fundamental para mantener una buena salud y bienestar general. No se trata de restricciones severas o de privarse de los alimentos que amas, sino de sentirte genial, tener más energía y mejorar tu salud.

    Principios Básicos de una Dieta Saludable

    1. Variedad de Alimentos
    Una dieta saludable incluye alimentos de todos los grupos principales:
    – Frutas y verduras frescas
    – Cereales integrales
    – Proteínas magras (pescado, pollo, legumbres)
    – Lácteos bajos en grasa
    – Grasas saludables (aceite de oliva, frutos secos)

    2. Hidratación Adecuada
    El agua es esencial para todas las funciones corporales. Se recomienda beber al menos 8 vasos de agua al día, aunque esta cantidad puede variar según la actividad física y el clima.

    Planificación de Comidas

    Desayuno: Incluye proteínas, carbohidratos complejos y frutas. Ejemplo: avena con frutas y nueces.

    Almuerzo: Combina proteínas magras con vegetales y cereales integrales. Ejemplo: ensalada de pollo con quinoa.

    Cena: Opta por comidas ligeras pero nutritivas. Ejemplo: pescado al horno con verduras.

    Consejos Prácticos

    – Come despacio y disfruta cada bocado
    – Controla las porciones sin obsesionarte
    – Incluye al menos 5 porciones de frutas y verduras al día
    – Limita el consumo de alimentos procesados y azúcares añadidos
    – Escucha a tu cuerpo y come cuando tengas hambre

    Beneficios de una Dieta Equilibrada

    Una alimentación saludable puede ayudarte a:
    – Mantener un peso corporal adecuado
    – Reducir el riesgo de enfermedades crónicas
    – Mejorar los niveles de energía
    – Fortalecer el sistema inmunológico
    – Mejorar el estado de ánimo y la concentración

    Conclusión

    Adoptar una dieta saludable es un proceso gradual. Comienza con pequeños cambios y ve incorporando hábitos saludables poco a poco. Recuerda que la consistencia es más importante que la perfección.

    Consulta siempre con un profesional de la salud antes de hacer cambios significativos en tu dieta, especialmente si tienes condiciones médicas específicas.

  • Post de prueba MCP reconectado

    Este post sirve para comprobar que el MCP vuelve a permitir escritura.

  • El planeta Mercurio

    Mercurio es el planeta más cercano al Sol y el más pequeño del sistema solar. Debido a su proximidad al Sol, experimenta temperaturas extremas: muy altas durante el día y muy bajas por la noche.

    No tiene atmósfera significativa, lo que significa que no puede retener el calor. Su superficie está cubierta de cráteres, similares a los de la Luna, resultado de miles de millones de años de impactos.

    Mercurio tarda aproximadamente 88 días terrestres en completar una órbita alrededor del Sol y rota lentamente sobre su eje. A pesar de su tamaño, tiene un núcleo metálico muy grande, lo que le da un campo magnético débil pero existente.

  • El lado oculto de la luna: mitos, ciencia y lo que aún nos queda por descubrir

    ¿Y si te dijera que el misterio más persistente no está “allá afuera”, sino justo al otro lado de lo que ya miramos cada noche? El lado oculto de la luna ha alimentado teorías, leyendas y debates científicos durante décadas, no porque sea mágico, sino porque es difícil de observar desde la Tierra. Lo interesante es que, cuanto más se investiga, más matices aparecen: no es “oscuro” en sentido literal, pero sí es el hemisferio menos familiar. Y eso lo convierte en una mina de preguntas fascinantes.

    Además, entender por qué existe una cara visible y otra escondida abre la puerta a conceptos clave como la rotación síncrona, la historia de impactos y el futuro de la exploración espacial. A continuación, vamos a recorrer el tema con mirada crítica, sin perder la emoción de lo desconocido.

    ¿Qué es realmente el lado oculto de la luna?

    Empecemos por lo básico: el lado oculto de la luna es el hemisferio lunar que, desde la Tierra, no vemos directamente. La Luna tarda lo mismo en rotar sobre su eje que en orbitar nuestro planeta, un fenómeno llamado acoplamiento de marea o rotación síncrona. Por eso, siempre nos muestra la misma cara.

    Sin embargo, “oculto” no significa “sin luz”. Ese hemisferio recibe luz solar igual que el visible: cuando aquí vemos Luna nueva, el lado oculto está iluminado; y cuando aquí hay Luna llena, el lado oculto queda en noche lunar. Dicho esto, su invisibilidad desde la Tierra lo volvió terreno fértil para mitos y especulación.

    Por qué no vemos la cara oculta: rotación síncrona y libración

    Ahora bien, ¿la Luna está “pegada” mirando siempre hacia nosotros? No exactamente, pero casi. La gravedad terrestre frenó su rotación hace miles de millones de años hasta que quedó sincronizada. Desde entonces, el mismo hemisferio apunta, en promedio, hacia la Tierra.

    Aun así, existe un pequeño “balanceo” llamado libración que permite ver desde la Tierra un poco más del 50% de la superficie lunar a lo largo del tiempo. Es como si la Luna hiciera un leve vaivén. Ese detalle es importante porque demuestra que el “lado oculto” no es un muro perfecto, sino una región mayormente fuera de nuestra línea de visión directa.

    Con esa base clara, pasemos a lo que suele sorprender más: el lado oculto no se parece tanto al visible.

    Diferencias entre la cara visible y el lado oculto de la luna

    Una de las diferencias más llamativas es el contraste entre los mares lunares (zonas oscuras de lava solidificada) y las regiones montañosas claras. En la cara visible abundan los mares, mientras que el lado oculto está dominado por terrenos altos y craterizados.

    ¿Por qué? Las explicaciones más aceptadas apuntan a variaciones en el grosor de la corteza lunar y a la historia térmica interna. Si la corteza era más gruesa en el hemisferio lejano, habría sido más difícil que la lava emergiera y rellenara grandes cuencas, dejando menos “mares” y un aspecto más áspero.

    Además, el lado oculto alberga estructuras enormes como la cuenca Polo Sur–Aitken, uno de los cráteres de impacto más grandes del Sistema Solar. Ese tipo de cicatrices antiguas guarda información sobre el bombardeo temprano de meteoritos y sobre los materiales profundos expuestos por impactos colosales.

    Mitos y verdades: lo que NO es el lado oscuro

    Entre transición y transición, conviene separar ciencia de ficción. No existe un “lado permanentemente oscuro” de la Luna. Tampoco hay evidencia científica seria de bases ocultas ni fenómenos sobrenaturales asociados a esa región por el hecho de estar fuera de vista.

    Lo que sí existe es un entorno extremo: noches de dos semanas, días de dos semanas, temperaturas que varían de forma brutal y un terreno muy craterizado. Ese escenario, por sí solo, ya es suficientemente desafiante y extraordinario.

    Otro punto: el lado oculto es mucho más silencioso en términos de interferencia radioeléctrica terrestre. Y eso lo hace valioso, no misterioso por magia, sino por física.

    Exploración del lado oculto de la luna: de las primeras fotos a Chang’e

    La primera vez que la humanidad vio el hemisferio lejano fue gracias a sondas espaciales. En 1959, la soviética Luna 3 logró fotografiarlo, aunque con calidad limitada. A partir de ahí, misiones posteriores cartografiaron la superficie con enorme detalle, revelando su geología singular.

    En años recientes, el programa chino Chang’e dio un salto histórico con aterrizajes y operaciones robóticas en el lado oculto. Para comunicarse con la Tierra, estas misiones emplean satélites repetidores, porque la Luna bloquea la línea directa. Ese detalle técnico muestra por qué esta región es más compleja de explorar y por qué cada avance implica ingeniería de alto nivel.

    Gracias a instrumentos modernos, hoy se analizan composiciones minerales, distribución de regolito, y posibles depósitos en regiones polares. Y esto nos lleva de forma natural a la gran pregunta: ¿para qué sirve explorar allí?

    Por qué el lado oculto de la luna importa para la ciencia y el futuro

    Primero, por astronomía de radio. Un radiotelescopio en el lado oculto estaría protegido de gran parte del “ruido” tecnológico de la Tierra, lo que permitiría captar señales muy débiles del universo temprano. En otras palabras, es un lugar privilegiado para escuchar el cosmos con menos interferencias.

    Segundo, por geología planetaria. Como tiene menos mares, expone más terreno antiguo. Estudiarlo ayuda a reconstruir la historia de impactos y el enfriamiento de la Luna, y por extensión, la historia temprana del sistema Tierra-Luna.

    Tercero, por logística de exploración. Aunque establecer bases allí es más difícil por comunicaciones, también ofrece oportunidades: zonas polares con posibles reservas de hielo de agua, plataformas para experimentos y una “escuela” perfecta para operar lejos de la infraestructura terrestre. Todo lo aprendido en la Luna se traduce en capacidades para misiones a Marte.

    Cómo aprender más (y mejor) sobre el lado oculto sin caer en desinformación

    Si quieres profundizar, prioriza fuentes con datos verificables: agencias espaciales, publicaciones científicas divulgadas y mapas topográficos de misiones orbitales. Comparar imágenes del hemisferio visible y del lejano es un ejercicio excelente para entrenar el ojo y detectar diferencias reales, no narrativas inventadas.

    También puedes seguir lanzamientos y reportes de misiones activas, porque cada instrumento nuevo añade piezas al rompecabezas. Y, si te interesa la observación, aprovecha la libración para identificar bordes y cráteres cercanos al limbo lunar, conectando lo que ves desde casa con lo que capturan las sondas.

    El lado oculto de la luna no es un portal de fantasía: es un laboratorio natural que combina historia antigua, retos técnicos y oportunidades científicas únicas. Si conviertes la curiosidad en hábitos—leer fuentes sólidas, mirar mapas, seguir misiones—vas a descubrir que lo “oculto” no es lo desconocido para siempre, sino lo desconocido hasta que decides aprender a mirarlo mejor.

  • NASA’s IXPE Measures White Dwarf Star for First Time

    This artist’s concept depicts a smaller white dwarf star pulling material from a larger star, right, into an accretion disk. Earlier this year, scientists used NASA’s IXPE (Imaging X-ray Polarization Explorer) to study a white dwarf star and its X-ray polarization.
    This artist’s concept depicts a smaller white dwarf star pulling material from a larger star, right, into an accretion disk. Earlier this year, scientists used NASA’s IXPE (Imaging X-ray Polarization Explorer) to study a white dwarf star and its X-ray polarization.
    MIT/Jose-Luis Olivares

    By Michael Allen 
     
    For the first time, scientists have used NASA’s IXPE (Imaging X-ray Polarization Explorer) to study a white dwarf star. Using IXPE’s unique X-ray polarization capability, astronomers examined a star called the intermediate polar EX Hydrae, unlocking the geometry of energetic binary systems. 
     
    In 2024, IXPE spent nearly one week focused on EX Hydrae, a white dwarf star system located in the constellation Hydra, approximately 200 light-years from Earth. A paper about the results published in the Astrophysical Journal. Astrophysics research scientists based at the Massachusetts Institute of Technology in Cambridge led the study, along with co-authors at the University of Iowa, East Tennessee State University, University of Liége, and Embry Riddle Aeronautical University. 
     
    A white dwarf star occurs after a star runs out of hydrogen fuel to fuse in its core but is not massive enough to explode as core-collapse supernovae. What remains is very dense, roughly the same diameter as Earth with as much mass as our Sun.  
     
    EX Hydrae is in a binary system with a main sequence companion star, from which gas is continuously falling onto the white dwarf. How exactly the white dwarf is accumulating, or accreting, this matter and where it arrives on the white dwarf depends on the strength of the white dwarf star’s magnetic field. 
     
    In the case of EX Hydrae, its magnetic field is not strong enough to focus matter completely at the star’s poles. But, it is still rapidly adding mass to the accretion disk, earning the classification “intermediate polars. 

    In an intermediate polar system, material forms an accretion disk while also being pulled towards its magnetic poles. During this phenomenon, matter reaches tens of millions of degrees Fahrenheit, bouncing off other material bound to the white dwarf star, creating large columns of gas that emit high-energy X-rays – a cosmic situation perfect for IXPE to study.

    “NASA IXPE’s one-of-a-kind polarimetry capability allowed us to measure the height of the accreting column from the white dwarf star to be almost 2,000 miles high – without as many assumptions required as past calculations,” said Sean Gunderson, MIT scientist and lead author on the paper. “The X-rays we observed likely scattered off the white dwarf’s surface itself. These features are far smaller than we could hope to image directly and clearly show the power of polarimetry to ‘see’ these sources in detail never before possible.”

    Information from IXPE’s polarization data of EX Hydrae will help scientists understand other highly energetic binary systems.

    More about IXPE 

     The IXPE mission, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. It is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here: 

    https://www.nasa.gov/ixpe

  • What’s Up: January 2026 Skywatching Tips from NASA

    Jupiter beams bright, Saturn and the Moon cozy up, and the Beehive Cluster appears

    Jupiter is at its biggest and brightest all year, the Moon and Saturn pair up, and the Beehive Cluster buzzes into view.

    Skywatching Highlights

    • Jan. 10: Jupiter at opposition
    • Jan. 23: Saturn and Moon conjunction
    • Jan. (throughout): Beehive Cluster

    Transcript

    Jupiter is at its biggest and brightest

    The Moon and Saturn share the sky 

    And the beehive cluster makes an appearance 

    That’s what’s up, this January

    January 10, Jupiter will be at its most brilliant of the entire year! 

    This night, Jupiter will be at what’s called “opposition,” meaning that Earth will be directly between Jupiter and the Sun. 

    Jupiter at
    NASA/JPL-Caltech

    In this alignment, Jupiter will appear bigger and brighter in the night sky than it will all year – talk about starting off the new year bright! 

    To see Jupiter at its best this year, look to the east and all evening long, you’ll be able to see the planet in the constellation Gemini. It will be one of the brightest objects in the night sky (only the moon and Venus will be brighter)  

    Saturn and the Moon will share the sky on January 23rd as part of a conjunction!  

    January 23 Conjunction
    NASA/JPL-Caltech

    A conjunction is when objects in the sky look close together even though they’re actually far apart. 

    To spot the pair, look to the west and you’ll see Saturn just below the moon, sparkling in the night sky. 

    The beehive cluster will be visible in the night sky throughout January!

    The beehive cluster, more formally known as Messier 44, or M44, is made of at least 1,000 stars

    It’s an open star cluster, meaning it’s a loosely-bound group of stars. There are thousands of open star clusters like the beehive in the Milky Way Galaxy! 

    January 19 Beehive Cluster
    NASA/JPL-Caltech

    To see the beehive cluster, look to the eastern night sky after sunset and before midnight throughout the month – especially great nights to spot the cluster are around the middle of January when the cluster isn’t too high or low in the sky to see.   

    With dark skies you might be able to spot the beehive with just your eyes, but binoculars or a small telescope will help. 

    Here are the phases of the Moon for January.

    What's Up January 2026 Moon Phases
    NASA/JPL-Caltech

    You can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov.

    I’m Chelsea Gohd from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

    Keep Exploring

    Discover More Topics From NASA

  • NASA Selects Tech Proposals to Advance Search-for-Life Mission

    The letters NASA on a blue circle with red and white detail, all surrounded by a black background
    Credit: NASA

    NASA announced Monday the selection of industry proposals to advance technologies for the agency’s Habitable Worlds Observatory concept – the first mission that would directly image Earth-like planets around stars like our Sun and study the chemical composition of their atmospheres for signs of life. This flagship space telescope also would enable wide-ranging studies of our universe and support future human exploration of Mars, our solar system, and beyond.

    “The Habitable Worlds Observatory is exactly the kind of bold, forward-leaning science that only NASA can undertake,” said NASA Administrator Jared Isaacman. “Humanity is waiting for the breakthroughs this mission is capable of achieving and the questions it could help us answer about life in the universe. We intend to move with urgency, and expedite timelines to the greatest extent possible to bring these discoveries to the world.”

    To achieve its science goals, the Habitable Worlds Observatory would need a stable optical system that moves no more than the width of an atom while it conducts observations. The mission also would require a coronagraph – an instrument that blocks the light of a star to better see its orbiting planets – thousands of times more capable than any space coronagraph ever built. The Habitable Worlds Observatory would be designed to allow servicing in space, to extend its lifetime and bolster its science over time.

    To further the readiness of these technologies, NASA has selected proposals for three-year, fixed-price contracts from the following companies:

    • Astroscale U.S. Inc., Denver
    • BAE Systems Space and Mission Systems, Inc., Boulder, Colorado
    • Busek Co. Inc, Natick, Massachusetts
    • L3Harris Technologies Inc., Rochester, New York
    • Lockheed Martin Inc., Palo Alto, California
    • Northrop Grumman Inc., Redondo Beach, California
    • Zecoat Co. Inc., Granite City, Illinois

    “Are we alone in the universe? is an audacious question to answer, but one that our nation is poised to pursue, leveraging the groundwork we’ve laid from previous NASA flagship missions. With the Habitable Worlds Observatory, NASA will chart new frontiers for humanity’s exploration of the cosmos,” said Shawn Domagal-Goldman, director of the Astrophysics Division at NASA Headquarters in Washington. “Awards like these are a critical component of our incubator program for future missions, which combines government leadership with commercial innovation to make what is impossible today rapidly implementable in the future.”

    The newly selected proposals build on previous industry involvement, which began in 2017 under NASA’s “System-Level Segmented Telescope Design” solicitations and continued with awards for large space telescope technologies in 2024. The newly selected proposals will help inform NASA’s approach to planning for the Habitable Worlds Observatory concept, as the agency builds on technologies and lessons learned from its Hubble Space Telescope, James Webb Space Telescope, and upcoming Nancy Grace Roman Space Telescope.

    To learn more about NASA’s Habitable Worlds Observatory, visit:

    https://nasa.gov/hwo

    -end-

    Alise Fisher
    Headquarters, Washington
    202-358-2546
    alise.m.fisher@nasa.gov

    Details

    Last Updated

    Jan 05, 2026

  • I Am Artemis: Jacki Mahaffey

    4 Min Read

    I Am Artemis: Jacki Mahaffey

    Jacki Mahaffey, Artemis II chief training officer at NASA’s Johnson Space Center in Houston, stands in front of the Orion mockup in Johnson’s Space Vehicle Mockup Center.

    Credits:
    NASA/Rad Sinyak

    Listen to this audio excerpt from Jacki Mahaffey, Artemis II chief training officer:

    0:00 / 0:00

    When the Artemis II crew travels around the Moon aboard the Orion spacecraft, they will have spent countless hours training for their lunar mission, and Jacki Mahaffey will have played a role in preparing them for their journey.

    As the Artemis II chief training officer at NASA’s Johnson Space Center in Houston, Mahaffey manages the planning, development, and implementation of the astronauts’ training and integrated simulations. Her job is to ensure that when the Artemis II crew travels around the Moon inside Orion, the astronauts and flight controllers are ready for every moment — expected and unexpected.

    Training is all risk mitigation for the mission. By preparing the astronauts and flight controllers for what they might encounter, we enable mission success.

    Jacki Mahaffey

    Jacki Mahaffey

    Artemis II Chief Training Officer

    The Artemis II crew began their rigorous training in 2023, but the work of Mahaffey and her team started long before that. Years before the training began, her team gathered the experts on how to operate the different aspects of Orion, and what the crew will need to know to execute their mission.

    “One of my favorite moments from that process was when we all got together in one room, and everyone brought a piece of paper for every single lesson or training event that they expected to do with the crew,” Mahaffey said. “And we laid the entire thing out to figure out what’s the most logical order to put all of this training in, to help build that big picture for the crew.”

    Training for Artemis II began shortly after the crew was announced, with Mahaffey and her team introducing the astronauts to Orion’s systems and operational basics. Once the necessary simulators and mockups were ready, the crew transitioned into hands-on training to build familiarity with their spacecraft.

    At Johnson, Mahaffey’s team utilizes a range of specialized facilities, including the Space Vehicle Mockup Facility, where astronauts rehearse living and working inside the Orion mockup; the Orion Mission Simulator, which replicates flight software and displays; and the Neutral Buoyancy Laboratory, where the crew practices water survival techniques for post-splashdown scenarios.

    Jacki Mahaffey, Artemis II Chief Training Officer at NASA’s Johnson Space Center in Houston, stands in front of the Orion mockup in Johnson’s Space Vehicle Mockup Facility.
    NASA/Rad Sinyak

    “We try to simulate as much as we can here on Earth,” said Mahaffey. “But we still have gravity, so we rely on the crew’s experience to imagine how they’ll use the space in microgravity”

    Three of the four Artemis II astronauts have flown in space before, and Mahaffey sees their experience as a powerful asset. They bring insights that shape procedures and training plans, and they learn from each other’s unique problem-solving styles.

    “They are teaching us back about how to have that crew perspective of working in space and the things that are going to matter most,” she said.

    Mahaffey’s journey began with a love for engineering and a role as a flight controller in Johnson’s Mission Control Center. She found joy in training others and eventually transitioned into a full-time training role. Now, she leads a team of about 100 contributors, all working to prepare the crew for their historic mission.

    “I didn’t start out wanting to be a trainer — I studied engineering because I loved physics and math,” she said. “But as the job shifted toward applying that engineering knowledge, communicating, and planning how to operate a spacecraft, the natural next step was teaching others.”

    In our organization, once you’ve learned to fish, you teach someone else to fish.

    Jacki Mahaffey

    Jacki Mahaffey

    Artemis II Chief Training Officer

    For Mahaffey, Artemis is a bridge connecting her family’s legacy with the future of space exploration. Her grandfather worked on control systems for Apollo, and she sees her work as a continuation of that story, now with more advanced technology and new frontiers. 

    “We’re doing some of the same things Apollo did, but expanding on them,” she said. “We’re learning more about the Moon, our Earth’s history, and how we’ll get to Mars.” 

    Her role during Artemis II also includes serving as an Artemis capcom, short for capsule communicator, the position in mission control that directly communicates with the crew members. Mahaffey plans to work the entry shift for Artemis II — helping to guide the crew to splashdown and ensuring their safe recovery. The moment will be a culmination of her entire team’s hard work. 

    “I’ll feel good when the recovery forces report that the hatch is open,” Mahaffey said. “That moment will be incredible.” 

     The Artemis II crew’s Chief Training Officer Jacki Mahaffey smiles during Post Insertion and Deorbit Preparation training at the Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.
     The Artemis II crew’s Chief Training Officer Jacki Mahaffey smiles during post insertion and deorbit preparation training at Johnson’s Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.
    Credit: NASA/Mark Sowa

    About the Author

    Erika Peters

    Erika Peters

  • NASA Hubble Helps Detect ‘Wake’ of Betelgeuse’s Elusive Companion Star

    4 Min Read

    NASA Hubble Helps Detect ‘Wake’ of Betelgeuse’s Elusive Companion Star

    An illustration of the red supergiant star Betelgeuse, its companion star, and a dusty wake. The disk of a red-orange star is in the center. It is surrounded by a diffuse orange cloud representing its extended atmosphere. Below it about one stellar diameter away is a yellow dot representing a smaller companion star. From the companion, a dark red cloud wraps around in a counterclockwise direction. It begins very narrow and expands as it gets further from the companion, finally disappearing at the outer edge of the diffuse orange cloud around 10 o’clock. The words “artist’s concept” are at lower right.
    This artist’s concept shows the red supergiant star Betelgeuse and an orbiting companion star.
    Credits:
    Artwork: NASA, ESA, Elizabeth Wheatley (STScI); Science: Andrea Dupree (CfA)

    Using new observations from NASA’s Hubble Space Telescope and ground-based observatories, astronomers tracked the influence of a recently discovered companion star, Siwarha, on the gas around Betelgeuse. The research, from scientists at the Center for Astrophysics | Harvard & Smithsonian (CfA), reveals a trail of dense gas swirling through Betelgeuse’s vast, extended atmosphere, shedding light on why the giant star’s brightness and atmosphere have changed in strange and unusual ways.

    The results of the new study were presented Monday at a news conference at the 247th meeting of the American Astronomical Society in Phoenix and are accepted for publication in The Astrophysical Journal.

    The team detected Siwarha’s wake by carefully tracking changes in the star’s light over nearly eight years. These changes show the effects of the previously unconfirmed companion as it plows through the outer atmosphere of Betelgeuse. This discovery resolves one of the biggest mysteries about the giant star, helping scientists to explain how it behaves and evolves while opening new doors to understanding other massive stars nearing the end of their lives.

    Located roughly 650 light-years away from Earth in the constellation Orion, Betelgeuse is a red supergiant star so large that more than 400 million Suns could fit inside. Because of its enormous size and proximity, Betelgeuse is one of the few stars whose surface and surrounding atmosphere can be directly observed by astronomers, making it an important and accessible laboratory for studying how giant stars age, lose mass, and eventually explode as supernovae.

    An illustration of the red supergiant star Betelgeuse, its companion star, and a dusty wake. The disk of a red-orange star is in the center. It is surrounded by a diffuse orange cloud representing its extended atmosphere. Below it about one stellar diameter away is a yellow dot representing a smaller companion star. From the companion, a dark red cloud wraps around in a counterclockwise direction. It begins very narrow and expands as it gets further from the companion, finally disappearing at the outer edge of the diffuse orange cloud around 10 ou2019clock. The words u201cartistu2019s conceptu201d are at lower right.
    This artist’s concept shows the red supergiant star Betelgeuse and an orbiting companion star. The companion, which is orbiting clockwise from this point of view, generates a dense wake of gas that expands outward. It is so close to Betelgeuse that it is passing through the extended outer atmosphere of the supergiant. The companion star is not to scale; it would be a pinprick compared to Betelgeuse, which is hundreds of times larger. The companion’s distance from Betelgeuse is to scale relative to the diameter of Betelgeuse.
    Artwork: NASA, ESA, Elizabeth Wheatley (STScI); Science: Andrea Dupree (CfA)

    Using NASA’s Hubble and ground-based telescopes at the Fred Lawrence Whipple Observatory and Roque de Los Muchachos Observatory, the team was able to see a pattern of changes in Betelgeuse, which provided clear evidence of a long-suspected companion star and its impact on the red supergiant’s outer atmosphere. Those include changes in the star’s spectrum, or the specific colors of light given off by different elements, and the speed and direction of gases in the outer atmosphere due to a trail of denser material, or wake. This trail appears just after the companion crosses in front of Betelgeuse every six years, or about 2,100 days, confirming theoretical models.

    “It’s a bit like a boat moving through water. The companion star creates a ripple effect in Betelgeuse’s atmosphere that we can actually see in the data,” said Andrea Dupree, an astronomer at the CfA, and the lead study author. “For the first time, we’re seeing direct signs of this wake, or trail of gas, confirming that Betelgeuse really does have a hidden companion shaping its appearance and behavior.”

    For decades, astronomers have tracked changes in Betelgeuse’s brightness and surface features in hopes of figuring out why the star behaves the way it does. Curiosity intensified after the giant star appeared to “sneeze” and became unexpectedly faint in 2020. Two distinct periods of variation in the star were especially puzzling for scientists: a short 400-day cycle, recently attributed to pulsations within the star itself, and the long, 2,100-day secondary period.

    A graphic titled “Betelgeuse: Effect of Companion Star Wake” with a subtitle “Spectrum of Light Emitted by Iron (Fe II).” A graph plots brightness versus wavelength of light. The Y axis is labeled Brightness with an up arrow labeled brighter and a down arrow labeled dimmer. The X axis is labeled Wavelength of Light, angstroms with tick marks every 0.5 angstroms from 2723.5 at left to 2726.5 at right. 

The plot shows two wavy lines, an orange one on top and a blue one below it. The graph shows two distinct peaks. At left, or shorter wavelengths, the orange peak is much higher than the blue one. At right, or longer wavelengths, the two peaks are nearly the same height. A key shows that the orange line represents the companion star in front of Betelgeuse, while the blue line represents the companion star behind Betelgeuse.
    Scientists used NASA’s Hubble Space Telescope to look for evidence of a wake being generated by a companion star orbiting Betelgeuse. The team found a noticeable difference in light shown in the lefthand peak when the companion star was at different points in its orbit.
    Illustration: NASA, ESA, Elizabeth Wheatley (STScI); Science: Andrea Dupree (CfA)

    Until now, scientists have considered everything from large convection cells and clouds of dust to magnetic activity, and the possibility of a hidden companion star. Recent studies concluded that the long secondary period was best explained by the presence of a low-mass companion orbiting deep within Betelgeuse’s atmosphere, and another team of scientists reported a possible detection, but until now, astronomers lacked the evidence to prove what they believed was happening. Now, for the first time, they have firm evidence that a companion is disrupting the atmosphere of this supergiant star.

    “The idea that Betelgeuse had an undetected companion has been gaining in popularity for the past several years, but without direct evidence, it was an unproven theory,” said Dupree. “With this new direct evidence, Betelgeuse gives us a front-row seat to watch how a giant star changes over time. Finding the wake from its companion means we can now understand how stars like this evolve, shed material, and eventually explode as supernovae.”

    With Betelgeuse now eclipsing its companion from our point of view, astronomers are planning new observations for its next emergence in 2027. This breakthrough may also help explain similar mysteries in other giant and supergiant stars.

    The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

    Details

    Last Updated
    Jan 05, 2026
    Editor
    Andrea Gianopoulos
    Contact
    Media

    Claire Andreoli
    NASA’s Goddard Space Flight Center
    Greenbelt, Maryland
    claire.andreoli@nasa.gov

    Amy Oliver
    Center for Astrophysics | Harvard & Smithsonian
    Cambridge, Massachusetts

    Christine Pulliam
    Space Telescope Science Institute
    Baltimore, Maryland

  • NASA to Cover US Spacewalks 94, 95 at International Space Station

    Astronaut Anne McClain is pictured near one of the International Space Station's main solar arrays
    NASA astronaut and Expedition 72 Flight Engineer Anne McClain is pictured near one of the International Space Station’s main solar arrays during a spacewalk to upgrade the orbital outpost’s power generation system and relocate a communications antenna.
    Credit: NASA

    NASA astronauts will conduct two spacewalks Thursday, Jan. 8, and Thursday, Jan. 15, outside the International Space Station, and the agency will provide comprehensive coverage.

    The first spacewalk is scheduled to begin at 8 a.m. EST on Jan. 8 and last about six hours and 30 minutes. NASA will provide live coverage beginning at 6:30 a.m. on NASA+, Amazon Prime, and the agency’s YouTube channel. Learn how to stream NASA content through a variety of online platforms, including social media.

    During U.S. spacewalk 94, NASA astronauts Mike Fincke and Zena Cardman will exit the station’s Quest airlock to prepare the 2A power channel for future installation of International Space Station Roll-Out Solar Arrays. Once installed, the array will provide additional power for the orbital laboratory, including critical support of its safe and controlled deorbit.

    Fincke will serve as spacewalk crew member 1 and will wear a suit with red stripes, while Cardman will serve as spacewalk crew member 2 and will wear an unmarked suit. This spacewalk will be Cardman’s first and Fincke’s 10th, tying him for the most spacewalks by a NASA astronaut.

    The second spacewalk is scheduled to begin at 7:10 a.m. on Jan. 15 and last about 6 hours and 30 minutes. NASA will provide live coverage beginning at 5:40 a.m. on NASA+, Amazon Prime, and the agency’s YouTube channel.

    During U.S. spacewalk 95, two NASA astronauts will replace a high-definition camera on camera port 3, install a new navigational aid for visiting spacecraft, called a planar reflector, on the Harmony module’s forward port, and relocate an early ammonia servicer jumper — a flexible hose assembly that connects parts of a fluid system — along with other jumpers on the station’s S6 and S4 truss.

    NASA will announce which astronauts are scheduled for the second spacewalk after the Jan. 8 spacewalk.

    The spacewalks will be the 278th and 279th in support of space station assembly, maintenance and upgrades. Also, they are the first two International Space Station spacewalks of 2026, and the first by Expedition 74.

    Learn more about International Space Station research and operations at:

    https://www.nasa.gov/station

    -end-

    Josh Finch / Jimi Russell
    Headquarters, Washington
    202-358-1100
    joshua.a.finch@nasa.gov / james.j.russell@nasa.gov 

    Sandra Jones
    Johnson Space Center, Houston
    281-483-5111
    sandra.p.jones@nasa.gov